### Farming Advice Service



Farming

# Understanding soil biology for soil health and productive agriculture, with Dr Felicity Crotty

Tuesday 26th March 6-7pm

## Soil testing requirements

 The Farming Rules for Water requires farmers and land managers to conduct soil tests every 5 years to inform planning for applying manures and fertilisers.

Farmi

If you're applying manure or fertiliser to cultivated agricultural land, you must also plan by using the results of soil tests.

Cultivated agricultural land is both or one of the following:

- land you've ploughed, sowed or harvested at least once in the last year
- land where you've applied organic manure or fertiliser at least once in the last 3 years

The results of soil tests must show the pH and levels of:

- nitrogen you can use a soil nitrogen supply calculator instead of a soil test
- phosphorus
- potassium
- magnesium

Soil test results must be no more than 5 years old at the time of application.

• Existing management plans and results (within last 5 years) satisfy SFI SAM1: Assess soil, produce a soil management plan and test soil organic matter.

## Funding for soil management

- The Sustainable Farming Incentive (SFI) has <u>three actions for</u> <u>soils</u>, these focus on improving soil health, structure, organic matter and biology.
  - SAM1: Assess soil, produce a soil management plan and test soil organic matter

Far

- £6 per hectare (ha) and £97 per SFI agreement per year.
- SAM2: Multi-species winter cover crops
  - £129 per hectare per year.
- SAM3: Herbal leys
  - £382 per hectare per year.
- These actions can help with the **long-term productivity and resilience** of the soil to benefit food production, as well as **environmental benefits** such as better water quality, improved climate resilience and increased biodiversity.

## Soil types in England

- There are 683 soil series in England and Wales.
- You can find your soil type on the LandIS Soilscapes viewer.
- Soils are products of their parent material, with this factor governing inherent soil fertility and associated productivity.
- An unmanaged soil with a low pH can be classified as 'healthy', this relates to its formation, for example, upland habitats.



Farming

### The importance of soil: What makes a "healthy" soil?



Farming

Advice Service

### What does soil health represent?



### Soil is a non-renewable resource

UK soil contains about 10 billion tonnes of carbon, equal to 80 years of annual greenhouse gas emissions at current rates.



Farmi



Intensive agriculture has caused arable soils to lose 40 - 60% of its organic carbon, and the impacts of climate change pose further risks.

### The state of the environment: Soil



Almost 4 million hectares of soil is at risk of COMPACTION in England and Wales





Over 2 million hectares of soil at risk of EROSION in England and Wales – 17% of arable land.

### Soil degradation globally



Farming Advice Service

### Main issues in UK

- Wind erosion fen blow
- Water erosion splash from raindrops, rill and gully erosion small (to large) channels form, caused by surface runoff.
- Soil loss by crop harvesting
- Compaction

### Water erosion – Splash



Farm

- Can occur as soon as raindrops start falling (splash erosion).
- As runs over land or rock surface, collects weathered material (transport).
- Power of moving water increases with more water and ability to carry heavier debris
- Vegetation cover can reduce impact of erosion.

### **Agriculture water erosion**

- Sheet Erosion removal of relatively uniform, although thin layer of soil from land surfaced
- Rill Erosion numerous small channels formed. Results from concentrated overland flow.
- Gully Erosion larger channels formed from concentrated rill or sheet flow







### Large scale erosion event

#### Before



https://www.bbc.co.uk/news/world-europe-57862894

### After

### **Restoration one year later**





- BUT is this soil healthy?
- Will it still produce productive crops?
- If not why not?

### Other forms of soil loss

Soil Loss Due to Crop Harvesting in the EU















- Critical for understanding soil behaviour and management
- Most permanent feature of any soil
- Particle size distribution Sand, silt and clay only
- Stones are ignored
- OM treated separately





Soil Texture Triangle

Farming

# Soil types – Colour is important



Three major factors influence soil colours:

- 1. Organic matter content,
- 2. Water content
- Presence and oxidation states of iron and manganese oxides in various minerals.

| <u>Form</u>                         | <u>Chemical Formula</u>        | <u>Color</u> |
|-------------------------------------|--------------------------------|--------------|
| Ferrous oxide                       | FeO                            | Gray         |
| Ferric oxide<br>(Hematite)          | Fe <sub>2</sub> O <sub>3</sub> | Red          |
| Hydrated ferric oxide<br>(Limonite) | 2Fe₂O₃ ·3H₂O                   | Yellow       |



# Colour – an indicator of organic matter



Farming

Advice Service

Figure 7. Examples of soil with less than 1%, 2% and 3% organic matter from left to right, respectively. Photo: Jodi DiJong-Hughes

### Soil carbon

- The soil organic carbon pool is the second largest on the planet; sequestrating atmospheric carbon in the soil is a cost-effective climate change mitigation strategy.
- Farmers and land managers can estimate their farm/estate soil carbon sequestration using carbon calculators.
  - ahdb.org.uk/knowledge-library/carbon-footprint-calculators-what-to-askto-help-you-choose
- Soil carbon measures can be entered as carbon credits and used as an alternative income stream
  - farmcarbontoolkit.org.uk/toolkit-page/getting-paid-for-carbon/
  - ahdb.org.uk/news/schemes-in-the-carbon-market-what-to-look-out-for

# The influence of organic matter



The influence of organic matter (OM) on the stability of soil aggregates against slaking (falling apart) when wetted. Although both soils appeared well aggregated when dry (left), when the same amount of water was added to each the aggregates in the low OM soil rapidly fell apart while those in the higher OM soil remained intact.



### Active organic matter?

- Soil organic matter is estimated to contain 58% organic carbon
- SOM mixture of active and more recalcitrant (passive) fraction (total measured)





Farming

Respiration

## рН



### measured by **pH scale**





- Balance between hydrogen ions (H<sup>+</sup>) and hydroxyl ions (OH<sup>-</sup>).
- 2 processes promote soil acidification.
  - **1.** The production of  $H^+$  ions.
  - 2. The washing away of nonacid cations.
- Soil acidity is closely related to the amount of annual precipitation.

Causes:

Parent Material Leaching Fertiliser use Precipitation

## рН



- pН Flower Color
- 4.5 deep, vivid blue 5.0 medium blue

- 5.5 lavender-purple
  6.0 purplish-pink
  6.5 mauve-pink
  6.8 medium pink
  7.0 deep, vivid pink







## Soil structure formation

- Plant root secrete compounds gluing soil particles together
- Fungal mycelia act like threads to tie up soil particles
- Earthworms ingest and excrete soil "crumb" structure in grasslands
- Decomposed organic matter acts to bind soil particles together
- External factors influence compaction traffic, livestock
- Soil compaction reduces plant biomass



# How to manage soil to reduce compaction?



Figure 4.50 Vehicle tires compact soil to considerable depths. (Left) Representative bulk densities associated with traffic compaction on a sandy loam soil. Plowing can temporarily loosen the compacted surface soil (plow layer), but usually increases compaction just below the plow layer. (Right) Vehicle tires (750 kg load per tire) compact soil to about 50 cm. The more narrow the tire, the deeper it sinks and the deeper its compactive effect. The tire diagram shows the compactive pressure in kPa. For tire designs that reduce compaction, see Tijink and Van der Linden (2000). (Diagrams courtesy of Ray R. Weil)



### **Prevention better than cure**

- Compaction is easy to do but difficult and expensive to fix
- On grassland aeration and organic amendments
- On arable minimise traffic from heavy machinery and utilise weigh distribution techniques (low pressure tyres), no till farming and varying conventional practice

 Subsoiling – results maybe temporary

Farming

- Add organic matter increases fertility and biological activity
- Increase earthworm numbers!



Figure 2.6. Changes in soil surface and water-flow pattern when seals and crusts develop.

Factors increasing score

- Block extraction
- Aggregate shape and size
- Roots
- Anaerobic
- Aggregate fragmentation

| Structure<br>quality                                                                         | Size and<br>appearance of<br>aggregates                                                                                                                   | Visible porosity<br>and Roots                                                                                                               | Appearance after<br>break-up: various<br>soils | Appearance after break-<br>up: same soil different<br>tillage | Distinguishing<br>feature | Appearance and description of nat<br>or reduced fragment<br>of ~ 1.5 cm diameter                                                              | ural                         |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Sq1<br>Friable<br>Aggregates<br>readily crumble<br>with fingers                              | Mostly < 6 mm after<br>crumbling                                                                                                                          | Highly porous<br>Roots throughout<br>the soil                                                                                               |                                                |                                                               | Fine aggregates           | The action of breaking<br>block is enough to rew<br>them. Large aggregate<br>are composed of smal<br>ones, held by roots.                     | the<br>sal<br>ts<br>ler      |
| Sq2<br>Intact<br>Aggregates<br>easy to break<br>with one hand                                | A mixture of porous,<br>rounded aggregates<br>from 2mm - 7 cm.<br>No clods present                                                                        | Most aggregates<br>are porous<br>Roots throughout<br>the soil                                                                               |                                                |                                                               | High aggregate porosity   | Aggregates when<br>obtained are rounded,<br>very fragile, crumble we<br>easily and are highly<br>porous.                                      | ery                          |
| Sq3<br>Firm<br>Most<br>aggregates<br>break with one<br>hand                                  | A mixture of porous<br>aggregates from<br>2mm -10 cm; less<br>than 30% are <1 cm.<br>Some angular, non-<br>porous aggregates<br>(clods) may be<br>present | Macropores and<br>cracks present.<br>Porosity and roots<br>both within<br>aggregates.                                                       |                                                | C.A.L.                                                        | Low aggregate<br>porosity | Aggregate fragments a<br>fairly easy to obtain. Th<br>have few visible pores<br>and are rounded. Roo<br>usually grow through t<br>aggregates. | are<br>hey<br>is<br>he       |
| Sq4<br>Compact<br>Requires<br>considerable<br>effort to break<br>aggregates<br>with one hand | Mostly large > 10 cm<br>and sub-angular non-<br>porous;<br>horizontal/platy also<br>possible; less than<br>30% are <7 cm                                  | Few macropores<br>and cracks<br>All roots are<br>clustered in<br>macropores and<br>around aggregates                                        |                                                |                                                               | Distinct<br>macropores    | Aggregate fragments a<br>easy to obtain when so<br>wet, in cube shapes w<br>are very sharp-edged<br>show cracks internally                    | are<br>bil is<br>hich<br>and |
| Sq5<br>Very compact<br>Difficult to<br>break up                                              | Mostly large > 10 cm,<br>very few < 7 cm,<br>angular and non-<br>porous                                                                                   | Very low porosity.<br>Macropores may<br>be present. May<br>contain anaerobic<br>zones.<br>Few roots, if any,<br>and restricted to<br>cracks |                                                |                                                               | Grey-blue colour          | Aggregate fragments a<br>easy to obtain when so<br>wet, although<br>considerable force ma<br>needed. No pores or<br>cracks are visible usua   | are<br>bilis<br>ybe<br>ally. |

Farming Advice Service

**VESS** 

# Need to think about the different textures of soil, when doing a VESS

#### SOME GENERAL PROPERTIES OF THE THREE MAJOR SIZE CLASSES OF INORGANIC SOIL PARTICLES

Farming

Advice Service

|    | Property                                                           | Sand               | Silt                  | Clay                |
|----|--------------------------------------------------------------------|--------------------|-----------------------|---------------------|
| 1. | Range of particle diameters in millimeters                         | 2.0-0.05           | 0.05-0.002            | Smaller than 0.002  |
| 2. | Means of observation                                               | Naked eye          | Microscope            | Electron microscope |
| 3. | Dominant minerals                                                  | Primary            | Primary and secondary | Secondary           |
| 4. | Attraction of particles for each other                             | Low                | Medium                | High                |
| 5. | Attraction of particles for water                                  | Low                | Medium                | High                |
| 6. | Ability to hold chemicals and nutrients<br>in plant-available form | Very low           | Low                   | High                |
| 7. | Consistency when wet                                               | Loose, gritty      | Smooth                | Sticky, malleable   |
| 8. | Consistency when dry                                               | Very loose, gritty | Powdery, some clods   | Hard clods          |

### **How to VESS**

Farming Advice Service



### score of each layer x thickness of layer/overall depth of soil block

# Identifying layers within soil block for VESS



- 3 layers visible
- Friability will likely feel different
- May give each layer a different VESS score

Farming

Advice Service

- Add each VESS score together and divide by depth to get overall VESS score.
  - = 1 x 6cm + 2 x 7cm + 2.5 x 7cm /20
  - = 6 + 14 + 15 = 35 / 20 = 1.75 VESS

## Soil physicochemistry



Farming

- Soil science is often taught emphasising the physicochemical properties....
- BUT without biology, soil is just an inert substrate!
- HEALTH = LIFE

## What is soil health?

- Soil quality refers to "the continued capacity of a soil to function" (Doran and Zeiss, 2000).
- BUT// Only something living can have health, thereby we are (unconsciously) acknowledging that we regard soil as a living ecosystem and not just an inert base for agriculture.



Farm

Advice Servic

# Greater weight of fauna below ground than livestock



#### Crotty, 2022 Frontiers for Young Minds

Farming

Advice Service

# Soil: The poor man's tropical rainforest

- Soil organisms drive decomposition and nutrient cycling.
- Agricultural practices can change the soil habitat influencing the abundance and diversity of soil fauna.
- Soil is home to ¼ of all living species on earth.



Farming

Advice Service

## Importance of soil biology

- Biology is one of the main components of the soil.
- 60-90% of primary production is decomposed.
- Some known specialist feeders BUT many generalist feeders.
- "Enigma of soil animal diversity" due to lack of niche specificity.



Farming

# What soil animals do you know?



# What soil animals do you know?





90% of all insects spend part of their lifecycle in the soil

# Soil Biodiversity – time spent in soil



| Time       | Characteristics                                                                      | Organisms                         |
|------------|--------------------------------------------------------------------------------------|-----------------------------------|
| Permanent  | Entire life cycle in the soil                                                        | Mites, springtails,<br>earthworms |
| Temporal   | Part of life cycle in the soil                                                       | insect larvae                     |
| Periodical | Frequently enter into the soil                                                       | Some insects and larvae           |
| Transitory | An inactive phase in the soil (egg,<br>pupa and hibernation) not an<br>active period | Some insects                      |
| Accidental | Animals that fall down on to soil or are transported by runoff                       | Insect larvae, canopy insects     |

# Microfauna, mesofauna, Macrofauna



Macro- and megafauna

(mm)

#### Microfauna

- Bacteria
- Fungi
- Protozoa
- Rotifers
- Flatworms
- **Tardigrades**
- Nematodes

- Springtails
- Protura

Mesofauna

- Symphyla
- Diplura
- Mites
  - Beetle larvae
- Fly larvae
- Centipedes







- **Beetles**
- Slugs
- Snails
- Ants
- Termites
- Spiders

- Millipedes



Body width

 $(\mu m)$ 

Mesofauna

Microflora and microfauna

Nematoda

Protozoa

Rotifera

Acari

Collembola

Bacteria

Fungi

# Microfauna: Nematodes (roundworm)

- Millions per m<sup>2</sup> most abundant animals on earth (80%?)
- Many functional groups: Bacteriovores, fungivores, herbivores, omnivores, predators
- Release large amounts of N while feeding -> microbial loop
- Found everywhere important part of the soil food web and soil health
- Most focus has been on plant parasitic nematodes e.g. PCN



Farn

## Microfauna Tardigrades

- Have been around for 530 million years
- Tardigrades are classified as extremophiles
- Can live in boiling water and solid ice
- Brought back to life after being rehydrated from 100+ year old moss samples
- Have survived 30 days in space
- Can repair their DNA after radiation damage
- Most tardigrades are phytophagous or bacteriophagous

THE NUMBERS A tardigrade can live without food or water for up to 30 years. 304°F The hottest temperature it can survive in is 304°F. -458°F The coldest temperature it can survive in is -458°F

Tardigrades are tiny creatures that live in water. Thi picture has been blow up—they're actually smaller than a grain of salt!

#### FIERCE

Farming

A tardigrade's mouth is full of tiny daggers. It uses them to bite its food and suck out the insides.

#### CUTE

Tardigrades are nicknamed "water bears" because they look like tiny bears with eight legs. Check out those claws!

#### IMPOSSIBLE TO DESTROY

The tardigrade's body is designed to survive in the desert, the ocean, and even outer space.

#### LASTING

Tardigrades have been on Earth since before the dinosaurs. And scientists think they may outlive us all!



https://www.chaosofdelight.org/collembola-springtails



### https://www.chaosofdelight.org/collembola-springtails



### https://www.chaosofdelight.org/mites



### Food web



https://ahdb.org.uk/knowledge-library/soil-food-web

### Macrofauna: earthworms

Farming Advice Service



### Up to 3 tonnes per ha



# Earthworms as ecosystem engineers



### Earthworm ecology

Shown are three main ecological categories of earthworms and examples of resident earthworm species. Not all species fall neatly into these categories, as some earthworms can vary their burrowing and feeding preferences depending on life stage and soil conditions.



### Earthworms





## **Earthworms in the UK**

- Around 30 species of earthworms
- (they're the ones that crossed the channel before the UK became an island!)
- Longevity and fecundity depends on species but some species thought to live up to 10 years!



Farming

### **Earthworms**



## Live within the soil pores

- Soil environment shows extreme variation in space (and time)
- Wide range of surface types, pore size, microclimate and resources for organisms to live in/on and utilise
- E.G. Roots use pores of >100 μm as points of entry, while root hairs, protists, fungi use pores of > 10 μm, whilst bacteria can move in water films of only 1 μm depth



### **Ecosystem services**



Dominant UK NEA Broad Habitats (>50%) by area per 1km cell

Farming Advice Service

Mountains, Moorlands and Heaths Semi-natural Grasslands Enclosed Farmland Woodlands Freshwaters - Open waters, Wetlands and Floodplains Coastal margins .....

### Without soil biodiversity huge reduction in ecosystem services



Farming

Advice Service

### Soil health is important all year



## In conclusion

- If soil biodiversity is to be used as an indicator of soil health than food availability and crop establishment methods need to be considered.
- The more stable the environment is (less digging) and more food provided (organic matter) the more likely soil biodiversity populations will grow; and potentially the soils health will improve

Healthier a soil is, the more resilient it will be to future weather extremes.





- AHDB, (2018). The soil food web factsheet. AHDB GreatSoils
- Brown, C, Walpole, M, Simpson, L. & Tierney, M. (2011) Introduction to the UK National Ecosystem Assessment. In: The UK National Ecosystem Assessment Technical Report. UK National Ecosystem Assessment, UNEP-WCMC, Cambridge.

Farming

- **Crotty, FV,** (2020). Soil Organisms Within Arable Habitats, In: Hurford, C, Wilson, P, Storkey, J. (Eds.), The Changing Status of Arable Habitats in Europe: A Nature Conservation Review. Springer International Publishing, Cham, pp. 123-138.
- **Crotty, FV,** (2021). Assessing soil health by measuring fauna, In: Otten, W. (Ed.), Advances in measuring soil health. Burleigh Dodds Science Publishing, Cambridge, UK.
- Crotty, FV (2022). Soil organisms have favourite forage plants. Frontiers for Young Minds
- Doran, JW, Zeiss, MR, (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15, 3-11.
- Environment Agency, (2019). The State of the Environment: Soil. <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment\_data/file/805926/State\_of\_the\_environment\_soil\_report.pdf</u> [accessed 12.11.19]
- European Commission (2008). The soil is alive! Protecting soil biodiversity across Europe. <u>http://ec.europa.eu/environment/archives/soil/pdf/handouts\_bonn.pdf</u> [accessed 12.11.19]
- Nielsen, U. (2019). Soil Fauna Assemblages: Global to Local Scales (Ecology, Biodiversity and Conservation). Cambridge: Cambridge University Press. doi:10.1017/9781108123518
- Phillips, HRP, Guerra, C., Bartz, MLC., Briones, MJI., Brown, G, Crowther, TW..., Crotty, FV..., Cameron, EK, & Eisenhauer, N, (2019). Global distribution of earthworm diversity. Science 366, 480-485.
   <a href="https://doi.org/10.1126/science.aax4851">https://doi.org/10.1126/science.aax4851</a> available <a href="http://nora.nerc.ac.uk/525649">http://nora.nerc.ac.uk/525649</a>

### Farming Advice Service

- Technical advice line: 03000 200 301
- Email: advice@farmingadviceservice.org.uk
- Website: farmingadviceservice.org.uk

The Farming Advice Service (FAS) is funded by the Department for Environment, Food and Rural Affairs (Defra). We provide free, confidential advice to help farmers and land managers in England understand and meet the legal requirements in English law around certain farming activities to protect people, livestock and the environment.